Il concetto di modello nella scienza

Carlo Felice Manara

Un peso sempre maggiore nella didattica della scienza viene assunto dal termine «modello», adottato con vari significati. L'articolo vuole portare un contributo alla chiarezza sui suoi diversi impieghi.

Il termine «modello» viene utilizzato quotidianamente nel linguaggio comune ed ha, come avviene quasi sempre, vari significati. Tuttavia esiste un concetto comune a tutti questi significati, concetto che potrebbe essere esposto presentando il modello di qualche cosa come un oggetto, una persona, un sistema fisico che ha qualche somiglianza con un altro oggetto o ente vivente, che si vuole conoscere o imitare o riprodurre. Ciò si può anche dedurre dai termini sinonimi, che spesso vengono impiegati al posto del termine originale. Tra tali termini sinonimi ricordiamo per esempio: bozzetto, abbozzo, forma, manichino, esempio, archetipo, prototipo, ecc. Anche la scienza utilizza il termine «modello» e, come al solito, lo fa precisandolo, in modo che il termine stesso abbia un significato costante e fissato e non debba essere definito di volta in volta dal contesto.

Tuttavia, anche in questo caso, il termine «modello» assume vari significati, in dipendenza delle varie teorie e dei vari ambiti nei quali esso viene impiegato; e ci pare interessante soffermarci ad analizzare questi ambiti e questi diversi impieghi di un medesimo termine, perché crediamo che questa ridessione possa condurre anche a comprendere meglio alcure procedure che la scienza adotta nelle sue varie branche. Pare a noi che nell'impiego scientifico il termine «modello» venga adottato con vari significati, che hanno tuttavia un fondo comune, di cui abbiamo detto poco sopra. Nelle pagine che seguono rifletteremo quindi su questi diversi impiezhi di un medesimo termine, allo scopo di comprendere meglio il cammino che noi percorriamo nella ricerca della ve-

Il modello iconico

Consideriamo il primo senso in cui viene presentato ed utilizzato il concetto di modello nella tecnica e nella scienza. Si potrebbe dire che si tratta di un comportamento del tutto naturale da parte del ricercatore o del tecnico; tuttavia è utile riflettere sulle ipotesi, spesso non coscientemente analizzate e non esplicitamente enunciate, sulle quali si basa l'impiego del modello in questo primo caso.

Infatti, in questa prima accezione, il modello viene considerato come un sistema materiale che ha, per qualche buona ragione, degli aspetti in comune con un altro sistema materiale che si vuole conoscere; in forza di questa analogia o similitudine tra i due sistemi, le osservazioni o le misure fatte su uno di essi vengono assunte come base per trarre delle informazioni sull'altro dei sistemi materiali.

Si pensi per esempio a ciò che si fa abitualmente nelle gallerie del vento per i modelli di aerei, o nelle vasche navali per i modelli di navi. La resistenza che un certo aereo oppone all'avanzamento, la portanza di un certo profilo alare, la resistenza di un certo scafo al muoversi nell'acqua sono informazioni necessarie per la costruzione degli aerei e delle loro ali, o per la costruzione delle navi. Tuttavia risulta molto difficile, e spesso impossibile o troppo costoso, desumere queste informazioni dalle macchine effettivamente costruite; quindi se ne costruisce prima un modello in scala, sul quale si fanno le misure. Lo stesso avviene per certe dighe grandissime, per certi edifici o per certi materiali che servono per la loro costruzione. Considerazioni analoghe si possono fare a proposito della rappresentazione di una regione della Terra: tutti conoscono l'uso delle carte geografiche o topografiche, dei mappamondi e di altre immagini del nostro pianeta o di sue parti. Queste iminagini sono costruite, come suol dirsi, «in scala», e le misure che si eseguono sulle immagini ci forniscono informazioni sulle reali dimensioni delle zone geografiche rappresentate.

Ripetiamo che l'impiego di modelli in questo modo è accettato comunemente come una cosa del tutto naturale; tuttavia vale la pena di riflettere su questo impiego, per rendere esplicite le ipotesi sulle quali esso si fonda.

discipline

Vorremmo osservare infatti che la costruzione del modello di una certa realtà fisica che si vuole conoscere si fonda essenzialmente sulla constatazione di una certa analogia tra ciò che si costruisce e ciò che si rappresenta; analogia che viene accettata su basi più o meno solide, ma che giustifica la procedura seguita.

Il rispetto di questa analogia, intuita in un primo tempo ed acceftata in un secondo tempo come ipotesi di lavoro, si esplica in vari modi: per esempio, nel caso delle gallerie del vento e delle vasche navali, si cerca di costruire il modello rispettando il più possibile la similitudine geometrica; tale similitudine infatti potrebbe essere considerata come il primo, il più intuitivo e chiaro esempio di analogia tra enti materialmente diversi tra loro. Lo stesso si può dire per quanto riguarda le carte geografiche e topografiche, le quali vengono considerate tanto più utili quanto più le misure eseguite su di esse danno delle informazioni precise sulla reale conformazione della zona di superficie terrestre interessata.

Tuttavia l'analogia può anche non limitarsi alla pura similitudine geometrica di forma, ma può riguardare delle proprietà più riposte dei due sistemi materiali. Per comprendere queste situazioni possiamo pensare per esempio ai modelli di distribuzione di velocità o di forze ottenuti con campi elettrici, variamente realizzati. In questo caso infatti l'analogia che permette di desumere le proprietà di un sistema materiale dalle misure eseguite su di un altro si fonda sulla circostanza che entrambi i sistemi materiali ubbidiscono, con buona approssimazione, a leggi che hanno la stessa forma matematica.

Nello stesso ordine di idee si potrebbe pensare agli esperimenti eseguiti con i farmaci sugli animali: in questo caso si potrebbe dire che l'organismo dell'animale è considerato come un modello del nostro, presumendo che la reazione dell'animale al veleno oppure al farmaco, alla malattia o all'infezione sia analoga a quella dell'uomo.

Infine, sempre nello stesso ordine di idee, possiamo pensare alla procedura che si segue quando si assimila un certo evento aleatorio al risultato della manipolazione su certi sistemi materiali, manipolazione che può dare dei risultati non prevedibili con certezza. Un situazione di questo tipo si avvera quando si schematizza un certo evento aleatorio con l'estrazione di palline da certe urne o con altre manipolazioni di sistemi materiali. In questo caso abbiamo un sistema materiale (per esempio l'urna nella quale sono state introdotte delle palline di diverso colore, in certe proporzioni) e si pensa, con buone ragioni, che l'esito di una estrazione renda abbastanza bene un evento aleatorio che si vuole conoscere. Anche in questo caso si potrebbe dire che l'urna viene assunta come modello del sistema materiale, il cui comportamento non è conosciuto completamente e pertanto viene considerato come aleatorio.

Significato e limiti del modello iconico

Gli esempi che abbiamo preso in considerazione, e soprattutto l'ultimo, mostrano chiaramente quali siano i limiti della procedura che si avvale dei modelli per conoscere la realtà, e quante siano le precauzioni da prendere, quando si voglia evitare di essere fuorviati ed ingannati da analogie e similitudini accettate in modo acritico e affrettato.

Queste precauzioni sono ben note da tempo: per esempio già Galileo nel suo celebre «Dialogo sopra due nuove scienze» rileva che non è possibile aumentare a dismisura le dimensioni delle strutture materiali, perché una trave incastrata può spezzarsi sotto il proprio peso se si immaginano le sue dimensioni aumentate sopra ogni limite. Quindi per esempio i paesi incontrati dal viaggiatore Gulliver nei viaggi immaginari descritti dallo scrittore irlandese Johnatan Swift non possono esistere nella realtà: in particolare le ossa dei giganti del paese di Brodnignag si romperebbero sotto il peso dei loro corpi. Analoghe considerazioni possono essere fatte a proposito delle fantasie elaborate dal matematico, filosofo e teologo francese Blaise Pascal; questi, in una celebre pagina, per mostrare la grandezza e la miseria dell'uomo, immagina che dei mondi simili al nostro universo possano esistere in una sola goccia del sangue di un piccolissimo insetto. Anche in questo caso si può dire che la fantasia ha condotto troppo lontano la mente del grande matematico, perché le leggi della Natura impediscono l'esistenza reale di mondi che sono la pura e semplice riduzione o ingrandimento geometrico del nostro. Così tutti sanno che gli organismi degli animali superiori, per esempio dei mammiferi, anche quando presentano delle grandissime analogie al nostro, reagiscono spesso in modo diverso dal nostro alle infezioni ed ai farmaci.

Tuttavia molto spesso la costruzione o l'utilizzazione di un modello sono indispensabili per poter avviare la conoscenza di una realtà che ci si presenta a prima vista come troppo complessa per poter essere conosciuta più profondamente. E spesso anche la costruzione di un modello permette di verificare, di convalidare e di sottoporre a critica le conoscenze che si credono possedutè in forza di certe teorie; ed a sua volta l'esistenza di un modello stimola la costruzione di una teoria che conduca ad un possesso più profondo della realtà che si sta indagando.

Si potrebbe quindi concludere che l'impiego di modelli, in questo primo senso, è quasi sempre utilissimo per la scienza e per la tecnica, e molto spesso indispensabile; il compito dello scienziato è quello di dominare in ogni istante lo strumento che egli ha scelto, di controllare le proprie procedure, e di sottoporre a critica le informazioni che egli crede di aver tratto e che vuole trarre dal modello. In sintesi, ed in modo abbastanza rudimentale ma forse efficace, si potrebbe dire che il modello viene utilizzato (come abbiamo già detto) in forza di una presunta similitudine ed analogia con la realtà che si vuole conoscere ed indagare; e quindi l'abilità e la profondità di pensiero dello scienziato si manifestano con la critica puntuale e precisa di queste presunte analogie, e con il continuo controllo delle informazioni che si ottengono.

I modelli esplicativi della scienza

Abbiamo parlato di un primo significato del termine «modello» nella pratica della scienza; prenderemo ora in considerazione un secondo significato in cui il termine stesso viene assunto nella ricerca scientifica. Infatti in questa si parla spesso di modello intendendo indicare un sistema materiale, che è immaginato per spiegare le osservazioni e le misure da noi eseguite sulla realtà che vogliamo conoscere. Per spiegare meglio ciò che intendiamo dire citiamo, come primo esempio il celebre modello atomico di Bohr-Rutherford; in esso l'atomo veniva immaginato come un sistema solare in miniatura, dotato di un nucleo relativamente pesante, attorno al quale si immaginava che ruotassero gli elettroni, così come i pianeti ruotano attorno al sole.

Si potrebbe dire che la elaborazione di un modello immaginario sia la procedura principale di cui si avvale la scienza fisico-matematica per poter indagare le leggi della natura materiale: possiamo pensare, per esempio agli scienziati che immaginavano il calore come un fluido sottilissimo che invade i corpi, oppure a quelli che immaginavano un etere cosmico, il cui ufficio avrebbe dovuto essere quello di trasmettere a distanza le forze gravitazionali e quelle elettriche e magnetiche; oppure possiamo pensare al modello che la teoria cinetica dei gas si costruiva, immaginando le molecole come delle sferette perfettamente elastiche, i cui urti contro le pareti del recipiente dovevano spiegare la pressione esercitata dal gas sulle pareti stesse; e la temperatura del gas veniva messa in relazione con l'energia cinetica delle sferette, le quali erano immaginate come aventi volumi tutti uguali tra loro, indipendentemente dalla natura chimica del gas. Questa infatti potrebbe essere considerata come l'immediata conseguenza della nota legge di Avogadro, secondo la quale volumi uguali di gas, alla stessa temperatura, contengono lo stesso numero di molecole; il che potrebbe essere espresso, ripetiamo, dicendo che le molecole hanno un ingombro indipendente dalla loro natura chimica.

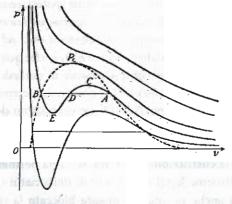
Abbiamo detto che questa costruzione di un modello cosiffatto è una delle procedure più frequenti adottate dalle scienze della natura; aggiungiamo che la costruzione di un modello immaginario è molto naturale, perché l'immaginazione è una facoltà il cui apporto è utilissimo, per la comprensione della natura delle cose materiali; il modello immaginato diviene quindi il fondamento delle ipotesi che si formulano per spiegare la natura delle cose materiali.

È appena necessario ricordare che le ipotesi, come tali, riguardano delle proprietà che non sono direttamente verificabili, cioè non sono oggetto di osservazione. Soltanto le conseguenze dedotte da quelle ipotesi possono essere oggetto di

discipline

osservazione e di verifica; e qui si innesta tutta la metridologia codificata dalla filosofia scientifica di oggi, metodologia che potrebbe essere esposta sbrigativamente dicendo che ogni osservazione coerente con le conseguenze di una data ipotesi non costituisce dimostrazione della validità assoluta dell'ipotesi stessa, perché anche un'altra ipotesi, magari anche totalmente diversa dalla prima, potrebbe dare le stesse conseguenze di quella. Invece ogni osservazione che contraddica alle conseguenze delle ipotesi provoca la demolizione di queste.

Ovviamente queste rudimentali enunciazioni ritraggono soltanto una situazione schematica ed astratta: nella realtà concreta l'adozione dei metodi quantitativi per la descrizione della realtà e per la formulazione delle ipotesi, rende sempre possibile l'esistenza di margini di approssimazione, e di errori di misura. Ne consegue che spesso si esita ad abbandonare un modello esplicativo della realtà, anche quando le sue conseguenze non sono completamente in accordo con l'osservazione, e si attribuisce il disaccordo agli errori di osservazione oppure alle inevitabili approssimazioni delle osservazioni iniziali.


Tuttavia, la costruzione di un modello ha permesso di stabilire moltissime leggi fondamentali della natura, anche se spesso ha anche in qualche misura bloccato la ricerca, avviandola verso strade che non conducevano alla verità. Gli esempi a conforto di queste nostre affermazioni abbondano in ogni ramo della scienza; si pensi per esempio al modello fornito dalla teoria cinetica dei gas, che abbiamo descritto poco sopra; immaginiamo il gas posto in un cilindro chiuso da uno stantuffo scorrevole. Come abbiamo detto, il modello spiega la pressione sullo stantuffo immaginando le molecole in moto rapidissimo, che urtano contro lo stantuffo, rimbalzano elasticamente, in modo che la risultante di questi urti numerosissimi si manifesti come la pressione esercitata dal gas contro lo stantuffo.

Immaginiamo ora di spostare lo stantuffo, in modo che il volume del recipiente sia ridotto per esempio alla metà, e di mantenere il gas sempre alla stessa temperatura. Un calcolo immediato porta allora a concludere che gli urti delle molecole contro lo stantuffo raddoppieranno di numero, nello stesso periodo di tempo, e quindi anche raddoppierà la pressione, che è la manifestazione di questi urti. Si ottiene così la spiegazione che viene espressa matematicamente con la legge detta di Boyle e Mariotte:

Pressione \times volume = costante.

discipline

Tuttavia è anche noto che questa legge risulta essere soltanto una prima approssimazione del comportamento di un gas: infatti, via via che le misurazioni si facevano più precise e gli esperimenti si moltiplicavano, si rese evidente il fatto che i gas, nel loro reale comportamento, si discostano quasi tutti da questa legge, la quale pertanto risulta valida soltanto per quelli che vengono chiamati «gas ideali, perfetti, monoatomici». Pertanto, per poter descrivere in modo più accurato il comportamento di un gas, si apportarono dei ritocchi alla legge sopra enunciata, giungendo così a scrivere una legge che viene rappresentata, in un diagramma cartesiano (v. fig. sottostante), con quelle che vengono abitualmente chiamate le «(curve) isoterme dei gas reali».

Indicando con p e v rispettivamente la pressione ed il volume di un gas, con T la temperatura assoluta e con R una costante valida per tutti i gas, e indicando infine con a e b due costanti caratteristiche di ogni gas, le isoterme sono rappresentate da equazioni del tipo della seguente:

(2)
$$(v - b) \times (p + a/v) = R \times T.$$

È interessante tuttavia osservare che la (2) non rappresenta il comportamento del gas per ogni valore di p e di v. Infatti, quando il gas abbia una temperatura abbastanza bassa, inferiore ad una temperatura chiamața «critica», il suo comportamento, al diminuire del volume, segue la legge (2) soltanto fino a che si sia raggiunto un determinato valore della pressione; in corrispondenza a questo valore incomincia la liquefazione del gas, fenomeno che continua a volume costante fino a che si sia completato. Esistono pertanto, su ogni isoterma, dei punti che vengono chiamati «punti critici», in corrispondenza ai quali il fenomeno che si considera cambia radicalmente di natura, rispetto alle nostre aspettative fondate sull'immaginazione, e quindi viene descritto con formule matematiche diverse da quelle che valgono per altri valori dei parametri considerati.

L'esempio che abbiamo discusso qui sopra, e che riguarda la teoria cinetica classica dei gas, ci pare paradigmatico nei riguardi delle procedure che vengono seguite per la costruzione di molte teorie fisico-matematiche della natura. Una procedura cosiffatta potrebbe essere descritta dicendo che partendo da certe osservazioni, si cerca di immaginare una struttura che le giustifichi; e da questa struttura immaginata si cerca di trarre il maggior numero possibile di conseguenze che si possano verificare con una successiva osservazione. Come è noto, non avviene quasi mai che queste ultime confermino in pieno le conseguenze che si traggono dalla struttura immaginata; allora questa viene ritoccata, cercando di variarla il meno possibile, per aderire meglio alla realtà che si osserva. Per esempio, nel caso della teoria cinetica dei gas, i termini aggiuntivi che compaiono nella (2) rispetto alla (1) sono stati introdotti per cercare di tener conto del volume proprio delle molecole, e per tener conto anche del fatto che tra due molecole qualsivogliano possono manifestarsi anche delle forze di attrazione newtoniana.

Si tratta di un continuo lavoro di ritocco e di osservazione, che spesso sfocia nell'abbandono dello schema immaginato, perché esso viene considerato non più soddisfacente per la spiegazione di tutti i fenomeni che via via vengono scoperti. È stato questo, per esempio, il caso del modello dell'atomo di Bohr, che ha dovuto essere abbandonato perché insufficiente a spiegare i fenomeni nuovi che si scoprivano. Tuttavia spesso la costruzione di una nuova teoria viene fatta ancora seguendo lo schema che abbiamo presentato, cioè immaginando altre strutture materiali, non direttamente osservabili, che permettano tuttavia di esprimere certe relazioni quantitative che traducono le ipotesi, e di dedurre delle conseguenze osservabili.

I modelli matematici

Le osservazioni con cui abbiamo chiuso il paragrafo precedente avviano alla presentazione di un terzo tipo di modello, che viene chiamato semplicemente «modello matematico». Infatti, in presenza dei pericoli e dei limiti che si incontrano con i modelli basati su strutture immaginate, si tende a considerare direttamente un sistema di relazioni matematiche come la riproduzione della realtà, o, meglio, di quegli aspetti di questa che interessano di volta in volta la ricerca scientifica. Le relazioni matematiche in parola possono essere equazioni o diseguazioni, o altri insiemi di simboli che permettano di eseguire una deduzione formale, in forza delle sole leggi sintattiche dei simboli adottati.

L'atteggiamento che conduce a costruire dei modelli di questo tipo è abbastanza tipico della termodinamica: invero in questo capitolo della fisica si cerca di abbandonare sempre di più gli schemi immaginati, del tipo di quelli relativi alla teoria cinetica dei gas, di cui abbiamo detto nei paragrafi precedenti, e si tende invece a stabilire direttamente le relazioni quantitative tra gli stimoli che noi pratichiamo su un sistema fisico e le risposte che questo fornisce, senza pretendere di immaginare i meccanismi interni che provocano queste risposte. Si suol dire spesso che il sistema viene considerato come una «scatola nera», nell'interno della quale ci asteniamo dal penetrare, limitandoci a registrare ciò che entra e ciò che esce dalla scatola. Ovviamente questo atteggiamento si fonda su una ipotesi tacita, che potrebbe essere formulata dicendo che si presume una certa coerenza del sistema nel rispondere agli stimoli; coerenza che è l'ovvio fondamento su cui si basa l'utilizzazione degli strumenti della matematica. La termodinamica non è il solo capitolo della fisica nel quale si assume un atteggiamento di questo tipo: si potrebbe dire che le classiche equazioni di Maxwell dell'elettromagnetismo costituiscono un superamento delle spiegazioni dei fenomeni elettromagnetici, che si tentavano per cercare di ridurre questi al comportamento immaginato di certi enti materiali.

Considerazioni analoghe si possono fare per le equazioni della meccanica quantistica, per es. per le classiche equazioni di Schrödinger. È noto che la meccanica dei quanti ha dovuto rinunciare a rappresentare il comportamento delle particelle subatomiche con le estrapolazioni che la fantasia opera sul comportamento dei corpi di piccola dimensione: infatti i due caratteri, corpuscolare ed ondulatorio sono inscindibili e non sono facilmente immaginabili congiuntamente. Tuttavia le equazioni matematiche descrivono in modo soddisfacente il comportamento della materia a livello subatomico: il che significa che possiamo accettare l'ipotesi che la natura sia coerente, e che le sue proprietà siano descritte con strumenti linguistici e formali come quelli della matematica, rinunciando tuttavia ad appoggiarci sulla immaginazione per avere una rappresentazione a noi accessibile di ciò che avviene.

Un caso abbastanza frequente di modelli di questo terzo tipo è dato dalla utilizzazione della matematica nelle scienze dell'uomo, in particolare nell'economia.

In questo caso il tentativo di immaginare dei sistemi materiali che possano spiegare in qualche modo il comportamento economico del singolo o dei gruppi sociali è destinato ad essere vano; si spiega quindi il fatto che in economia si chiami modello semplicemente un sistema di equazioni o di relazioni matematiche che legano gli aspetti misurabili, o anche solo quantificabili o simbolizzabili, del comportamento economico dell'uomo.

La considerazione dei modelli matematici in economia è abbastanza utile per comprendere il significato ed i limiti degli strumenti concettuali che noi utilizziamo per conoscere la realtà. È infatti chiaro che non è possibile tentare di descrivere in modo completo ed esauriente tutti i minimi particolari dei fatti economici; di conseguenza il ricercatore che tenta di costruire una teoria è costretto quasi sempre a scegliere tra una rappresentazione della realtà che appare rudimentale, ma che si presta ad una elaborazione successiva ed anche a degli sviluppi di calcolo adatti a formulare delle previsioni, anche se in larga misura approssimate, ed una formulazione minuta dei particolari, che tuttavia rischia di essere talmente complicata da prestarsi difficilmente a deduzioni chiare ed a successive elaborazioni numeriche. Inoltre i dati

discipline

quantitativi di partenza sono quasi sempre dedotti da osservazioni indirette, da misure estrapolate, e da statistiche, il che toglie la speranza di poter trattare questi fenomeni in modo analogo ai fenomeni della fisica o ai fatti della tecnica.

Altre realizzazioni del concetto di modello

Ciò che abbiamo esposto finora non esaurisce tutte le possibili realizzazioni del concetto di modello, così come viene concepito nella scienza. Si parla infatti di modelli anche in altri contesti, che ci paiono interessanti per varie ragioni. I contesti cui accenniamo si riferiscono alla complessa problematica riguardante i fondamenti della matematica o di sue particolari branche. Sappiamo infatti che dopo la revisione critica della matematica, iniziata nel secolo scorso ed ancora in pieno svolgimento, si è diffuso una specie di paradigma ideale di teoria. In questo ordine di idee ogni costruzione teorica dovrebbe incominciare con l'elencazione di assiomi, cioè di proposizioni non dimostrabili, e proseguire con dimostrazioni rigorose a partire soltanto dagli assiomi enunciati.

Questo paradigma ideale di teoria richiama alla mente ciò che B. Russell diceva paradossalmente della matematica, affermando che essa è una scienza in cui non si sa di che cosa si parla e non si sa se ciò che si dice è vero.

Questo enunciato è ovviamente paradossale, ma mette bene in evidenza il carattere di astrattezza e di generalità delle formulazioni matematiche, le quali non fanno riferimento ad un'unica realtà che dovrebbe fornire il loro contenuto («non si sa di che cosa si parla», dice Russell); pertanto la loro validità è fondata soltanto sul corretto impiego delle leggi di deduzione, e non sulla rispondenza degli enunciati ad una realtà materiale fuori di noi («non si sa se ciò che si dice è vero», dice sempre Russell). Questa condizione di estrema astrattezza delle formulazioni matematiche è garanzia da una parte della loro generalità, e dall'altra del rigore della deduzione; infatti è possibile dominare con un'unica formula tutte le realtà concrete che sono descritte dagli assiomi di una data teoria; e d'altra parte la deduzione, eseguita a livello totalmente astratto, non rischia di essere fuorviata dalle suggestioni che nascono dai riferimenti a particolari significati o contenuti dei simboli.

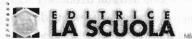
Sussiste tuttavia un problema che potrebbe essere formulato dicendo che i postulati di una teoria astratta debbono necessariamente costituire un insieme compatibile, esente da contraddizioni interne. Non basta infatti una semplice ispezione

PANORAMA DI STORIA ANTICA E MEDIEVALE

Corso di storia per il biennio di Gianni gentile, luigi ronga e aldo salassa

I. DALLA PREISTORIA ALL'APOGEO DELL'IMPERO ROMANO ISBN 88-350-8936-0 / pp. 480 - L. 40.000

II. DALLA CRISI DELL'IMPERO ROMANO ALLA METÀ DEL XIV SECOLO


ISBN 88-350-9282-5 / pp. 352 - L. 40.000

Il corso appare così strutturato:

- · ogni volume è diviso in unità didattiche;
- ciascuna unità è introdotta da un primopiano che affronta una questione cruciale per la comprensione di un dato periodo storico;
- ogni unità si chiude con un laboratorio, luogo di approfondimenti e di rapide incursioni monografiche, ma anche e soprattutto banco di prova di abilità diverse da quelle richieste dallo studio dei capitoli (come la capacità di riconoscere ed interpretare le fonti, di orientarsi nel dibattito storiografico ecc.).

Strumenti di verifica:

- ogni capitolo è accompagnato dalle operazioni sul testo, owero da batterie di esercizi raggruppati secondo stabili tipologie (lessico, tempi e durate, geografia della storia) che mirano a verificare il grado di comprensione, assimilazione ed elaborazione critica delle nozioni apprese dai capitoli;
- alle operazioni sul testo si aggiungono le schede di sintesi, predisposte secondo le modalità del cloze;
- ogni brano riportato nel laboratorio è seguito da esercizi di comprensione e da proposte di lavoro.

2001

iniziale, che non metta in evidenza delle contraddizioni palesi, a garantire la compatibilità del sistema: infatti la contraddizione potrebbe essere nascosta, e potrebbe rivelarsi soltanto dopo un certo numero di deduzioni. Scaturirebbe di qui la non consistenza della teoria che si costruisce, perché, come già enunciava la logica classica, da premesse false si può dedurre qualunque conseguenza, anche per esempio la negazione delle premesse stesse.

A ben guardare, le considerazioni che stiamo svolgendo erano alla base della celebre trattazione con la quale Girolamo Saccheri cercò di dimostrare per assurdo il postulato euclideo della parallela; egli infatti enunciò delle ipotesi che non erano visibilmente in contraddizione con gli altri postulati, ma cercò di mettere in evidenza quella che egli presumeva essere la contraddizione nascosta, deducendo delle conseguenze dalle premesse in modo tale da poter giungere a quello che egli considerava un assurdo.

È chiaro che questo di cui stiamo parlando è uno dei più importanti problemi dei fondamenti della matematica. Non ci pare questo il luogo per approfondire questo genere di questioni, che sono notevolmente intricate; ci limitiamo quindi a dire che una delle strade più comunemente seguite per mostrare la consistenza di un sistema di postulati è quella che conduce ad esibire un insieme di enti che soddisfino ai postulati stessi. Si suol dire che un insieme di enti cosiffatti costituisce un modello della teoria, intendendo così di indicare una realizzazione, tra le tante possibili in linea di principio, della teoria stessa.

Come è noto, questa procedura è stata seguita da E. Beltrami, il quale ha costruito, con gli strumenti della geometria differenziale, un modello di geometria non euclidea, dimostrando così che i postulati di quest'ultima sono compatibili, e di conseguenza dimostrando anche che il postulato euclideo della parallela non può essere dimostrato a partire da quelli che lo precedono nella trattazione classica. È pure noto che sono stati dati anche altri modelli di geometria noneuclidea, per esempio fondati sulla geometria proiettiva.

Analoga procedura segue per esempio D. Hilbert, nei suoi «Fondamenti di geometria», esibendo via via dei modelli dei suoi sistemi di postulati, costruiti con elementi di certi campi numerici.

Una riflessione ulteriore potrebbe portarci ad osservare che questa procedura si fonda sostanzialmente sulla presunzione che la realtà, dalla quale prendiamo gli elementi per costruire i modelli, sia coerente in sé stessa. Se poi questi elementi sono presi da altri capitoli della matematica, è chiaro che in questo modo viene presunta la coerenza dei capitoli stessi. Pertanto la soluzione del problema di compatibilità che così si offre è soltanto parziale e, per così dire, provvisoria.

Ma se non altro, essa ci indica una sostanziale unità della problematica della scienza, unità che ci riconduce in ogni caso ai problemi fondamentali della struttura e del significato della nostra conoscenza.

> Carlo Felice Manara - Emerito della Facoltà di Scienze dell'Università Statale di Milano